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We obtain complex nonlinear integral equations for the two asymptotically 
degenerate maximum eigenvalues of the transfer matrix of the eight-vertex 
model. These are exact for a lattice of a finite number N of columns. Solving 
the equations recursively gives an expansion of the eigenvalues about N = o~. 
Thus we can obtain the interracial tension of the model, as well as rederiving 
our previous result for the free energy. 
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1. I N T R O D U C T I O N  

In  previous papers (1"2~ we have obtained expressions for the eigenvalues and  
eigenvectors of the transfer matrix T of the zero-field, two-dimensional ,  

eight-vertex model  in lattice statistics. Since T commutes  with the Hami l ton ian  
Y~ of the one-dimensional  X Y Z  chain (for appropriate  values of the inter- 
act ion parameters),  we can also obta in  the eigenvalues and eigenvectors of ~ .  

For  a lattice of N columns (or a chain of N sites) the results are expressed 
in terms of n = �89 parameters  vl .... ,vn  or q~ .... , ~bn, which must  be 
obta ined by solving n s imul taneous t ranscendenta l  equations.  This is the same 
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situation as that which occurs in the Bethe ansatz solutions of the ice-type 
lattice models, (~) or the Heisenberg chain. (4) These are special cases of our 
models. 

Until now explicit solutions of these equations have only been obtained 
in the limit of N and n infinitely large. More precisely, if Area x is the numeric- 
ally largest eigenvalue of T, the limit 

--/3f = lim N -1 In Am~x (1) 
N~o~ 

has been evaluated, (1) giving f, which is the free energy per site of the infinite 
lattice (/3 here is the Boltzmann factor 1/kT).  However, the way in which this 
limit is approached has until now not been calculated. 

In particular, for ordered states 2 of the system we expect the two numer- 
ically largest eigenvalues A 0 and /11 of T to be asymptotically degenerate 
in the limit of N large, i.e., 

AolA1 = ~[1 + (9(e-N~')] (2) 

where e is a positive quantity that can be identified with the interracial 
tension. (5) 

In this paper we derive complex nonlinear integral equations that 
determine A 0 or A 1 forfinite N. This formulation is appropriate for examining 
the behavior as N - +  0% since solving the equations by recursion gives to 
first order the free energy f as defined by (t), and then to second order the 
dominant, but exponentially small, corrections to A 0 or A 1 . Thus we find that 

Ai  = e-NM(1 + s  i = 0 or 1 (3) 

where ei decays exponentially with increasing N and we can evaluate 

lim N -1 In E i (4)  
N--> 

Proceeding in this way, we are able to verify (2) and calculate e. We then 
compare the behavior o f f  and e near the critical temperature and find that 
certain predictions of scaling theory are satisfied. 

The integral equations themselves are of some interest in that they are 
of a similar form to those found by Gaudin, (6) Takahashi, (7) and Johnson and 
McCoy (8) for the partition functions of the Heisenberg and X Y Z  chains. 
(However, we have basically just one complex equation as against their 

2 From the weak-graph symmetry [Eq. (12) of Ref. 9) A0 and Az must also be asymptotic- 
ally degenerate even in the disordered state. However, one eigenvector lies in the subspace 
with an even number of down arrows per row of the lattice, the other in the subspace 
with an odd number of down arrows. Thus they do not interact with one another. 
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hierarchies of real equations.) That this should be so is perhaps not surprising, 
since a knowledge of the maximum eigenvalue of the row transfer matrix 
for all finite N presumably gives considerable information on the distribution 
of eigenvalues of the column transfer matrix for an infinite number of rows. 
The partition function of the X Y Z  chain is simply an average over this 
distribution. 

We give our results in the following sections of this paper. In Section 2 
we obtain some symmetry relations that enable us to consider just one of the 
four possible ordered states of the system. In Section 3 we quote our previous 
results m for the equations that determine the eigenvalues of T, making some 
notational changes to suit our present purposes. In Section 4 we show how 
we can transform these to the complex integral equations mentioned above. 
In Section 5 we consider the limit N--~ ~ and obtain f and or. In Section 6 
we give the behavior of these functions near the critical temperature, and in 
Section 7 we show that this behavior agrees with scaling theory. 

As far as possible detailed working is left to the appendices. 

2. S Y M M E T R Y  R E L A T I O N S  

In the eight-vertex model there are eight possible configurations of 
arrows at each vertex, occurring in four pairs with Boltzmann weights 
a, b, c, d. The system assumes an ordered state if one of the weights is greater 
than the sum of the other three, e.g., if 

e > a + b + d  (5) 

There are therefore four possible ordered states, depending on which 
of the Boltzmann weights is greater, However, for fixed interaction energies 
only one of the Boltzmann weights (the one of lowest energy) can dominate 
the others, so at most one phase transition can occur as the temperature 
T decreases from + oo to zero. 

Fortunately there are symmetry relations ~9~ that enable us to consider 
only one of the ordered states, without any loss of generality. From the 
definition of the transfer matrix T given in Eqs. (3.5) and (3.6) of Ref. 1, 
we see that the simultaneous interchanges 

a ++ b, c +-+ d (6) 

leave all elements of T unchanged. Thus each eigenvalue A of T satisfies the 
symmetry relation 

A ~ A(a ,  b] c, d) = A(b ,  a Jd, c) (7) 
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Further, let as ~ be the Pauli operator 

(010) (8) 

acting on the arrow, or "spin," on column J of the lattice. Take the number N 
of columns to be even and define 

Po = G l x ( ~ 3 x ( Y 5  x " ' "  (~x  . . .  N - - 1  ~ P e  ~ (~2xO'4xO '6  x ( ~ N  cc (9) 

Then from Eqs. (3.5) and (3.6) of Ref. 1 we find that 

T ~ T(a, b I c, d) = PoT(c, d l a, b) P,  (10) 

The operator PoP, simply reverses all arrows in a row and commutes 
with T. Consider an eigenvector x of T and let v = 0 or 1 according to 
whether x is symmetric or antisymmetric with respect to reversing all arrows. 
Then 

PoP~x = (--  1)~x (11) 

From (10) it follows that the eigenvalue A corresponding to x satisfies the 
symmetry relation 

A =- A ( a ,  b I c, d) = (--1)"A(c, d[ a, b) (12) 

If  we know the eigenvalues of T in the regime (5), then we can obtain 
the eigenvalues in any of the other three ordered states by using (7) and/or (12). 
Thus there is no less of generality in restricting attention to the regime (5), 
and we shall do this in the rest of this paper. We refer to this regime (with 
a, b, c, d all positive) as the p r i n c i p a l  r e g i m e  (P.R.). 

Note that in the P.R. we expect the system to be in an ordered state 
of  antiferroelectric type, this state being a natural generalization of the 
ordered state of the ice-type F-model. (a) Thus we expect A 0 to be positive, 
A1 to be negative. 

3. F U N C T I O N A L  E Q U A T I O N S  FOR E I G E N V A L U E S  

The equations that determine the eigenvalues are given in (4.2) and 
(6.2)-(6.12) of Ref. 1. We make one small change and define k, ~/, v, and p 
in terms of a, b, c, and d by 

a = p0 (2~1 )0 ( ,  ? - -  v)H(~ 1 + v),  b = pO(2~7)H(~7 - -  v)O(~ 1 @ v) 

e = p H ( 2 ~ ) O ( ~  1 - -  v)O(~? + v), d = - - p H ( 2 ~ 7 ) H ( ~  - -  v)H(~ 7 + v) (13) 
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where H ( u )  and O(u) are the elliptic theta functions of argument u and 
modulus k (w of Ref. 10). In appendix A we show how k, ~, v, and p may 
systematically be calculated from (13). 

Since H(u)  is an odd function and O(u) is even, the only difference 
between (13) and our previous definition in Eq. (6.2) of Ref. 1 is that the 
parametrization of b has been negated. This enable us to consider the P.R. 
directly, without introducing the mathematical inconvenience of elliptic 
functions of negative modulus. In fact, from Appendix A we see that in the 
P.R. we can choose k real and ~?, v, and p pure imaginary, satisfying the 
inequalities 

0 < k < 1, Im(p) < 0; [ Im(v)l < Im(~/) < �89 (14) 

where K, K'  are the complete elliptic integrals of the first kind of moduli k, 
k'  = (1 -- k2) 1/2, respectively (w167 of Ref. 10). 

We can replace k, ~, v by the scaled parameters 

r = zrK'/2K, A = --i~r~/K, a = - - i z rv /K  (15) 

and regard a, b, c, and d as functions of r, A, ~, and p. In the P.R. we see that 
-r, h, and c~ are real. Also, from (14) they satisfy the inequality 

I~l  < h  < r  (16) 

Suppose a, b, c, and d to have been given and r, h, o~, and p evaluated. 
I f  we then keep r, h, and p fixed and allow ~ to assume any complex value, 
we can regard a, b, c, and d, and hence T, as functions of ~, or more con- 
veniently of 

4 = io~ = zrv/K (17) 

Writing such an eigenvalue as T(~), we have shown in Ret. 1 that T(q;) 
is an entire function and satisfies a functional relation. (We use ~ as the 
variable in this paper rather than v.) 

The fact that we have now negated the parametrization of b slightly 
.complicates the working of Ref. 1 (which is why we did not do so earlier). 
However, repeating the working with this modification, or else appealing 
to symmetry relations, we find that Eq. (4.2) of Ref. 1 becomes 

(--1)"' T(~) Q(~) = g(q~ - i/x) Q@ + 2//1) + g(~ @ i/X) Q(~b - 2i/x) (18) 

where v' = 0 or 1 according to whether the eigenvector of T corresponding 
to the eigenvalue T(~) has nonzero elements for configurations in which 
there are an even or odd number of down arrows on each row of vertical 
bonds of the lattice. Defining a rationalized elliptic theta function h(q~) by 

h((o) = H(K(o/rr) O(K(o/rr) (19) 
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the function g(~) is given by 

g(q~) = [pO(0) h(q~)] N (20) 

and Q(~) is also an entire function. It satisfies the quasiperiodic conditions 

Q(~ q- 27r) = (--1) v' Q(~) (21) 

Q(~ -? 2#) = ( - 1 )  "+~ e "{'-i~) Q(4) (22) 

where v has the same meaning as in (11) (it replaces v" of Ref. 1), and 

n = �89 (23) 

(We take N to be even.) 
These equations are in principle sufficient to determine T(v). The elliptic 

function h(qS) satisfies the quasiperiodic conditions 

h(~ q- 2~r) = --h(~), h(~ + 2it) = --e "-'~ h(~) (24) 

(w167 of Ref. 10). It is an entire function and has only simple zeros, 
occurring at 

= 2mlvr + 2im2r (25) 

(ml, m2 integers). 
In an ordered antiferroelectric state we expect the number of down 

arrows per row to be even if n is even, odd if n is odd. Thus 

( -- 1 )~' = ( -- 1) n (26) 

In this case it follows from (21) and (22) that it must be possible to factorize 
Q(}) in the form 

Q(~) = Ik[ h(~ - ~j) (27) 

where 

exp I i j=l ~ ~ I  = (--1)~ (28) 

[To prove this, define q~l ..... qSn to be the zeros of Q(~b) in some period 
rectangle, take the ratio of the two sides of (27), and show that this ratio is a 
doubly periodic entire function. It is therefore bounded, and hence by 
Liouville's theorem must be a constant. We can choose this constant to be 
unity.] 

Since T(qS) is entire, it follows that on setting q~ = q51 .... , ~,~ in (18), 
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the 1.h.s. vanishes. Equating the r.h.s, to zero, we get n equations for the n 
unknowns ~1 .... , ~ , .  In principle these can be solved (there will be many 
solutions, corresponding to the different eigenvalues). We can then evaluate 
Q(~) and T(~) for all complex ~ from (27) and (18). In particular we can 
evaluate T(io O, where c~ is real and satisfies (16). Thus we can obtain the 
eigenvalues in the P.R. 

It is of course one thing to note that there are n equations for n unknowns 
and quite another to solve them. The rest of this paper is concerned with 
manipulating these equations. 

4. I N T E G R A L  E Q U A T I O N S  

The possible locations of q~l .... , ~n for various eigenvalues have already 
been discussed in connection with the partition function of the X Y Z  model (6-s) 
In this paper we consider only the two maximum eigenvalues and assume 
(as we did in Ref. 1) that ~1 .... , ~n lie on the real axis. We find that assump- 
tion is internally self-consistent and leads to integral equations for the two 
eigenvalues. 

In Appendix B we consider the case when c >~ a + b 4- d, so the system 
is effectively in a purely ordered state. In this case we are able to verify 
explicitly that ~, .... , q~ lie on the real axis and to locate the zeros of T(q~). 
We also note that the ratio of the two terms on the r.h.s, of (18), namely 

r(9~ ) = g(q~ --  iA) Q(~ q- 2i)t)/g((~ 4- iA) Q(sb --  2iA) (29) 

is exponentially small (when Nis large) in the domain 0 < Im(q~) < min(2A, r), 
while it is exponentially large in max(--2A, ---r) < Im(q~) < 0. 

This leads us to make the following assumptions, for any a, b, c, and d 
in the P.R. and for any N. 

Assumption A: ~1 ..... ~ .  lie on the real axis. 

Assumption B: 3 a real parameter SN such that 

O < S N < min(2A, r) 

SN --+ min(2)t, r) as N ~ oo 

j r(~b)l < 1 when 0 < Ira(b) < SN 

] r(q~)l > 1 when --SN < Im(~b) < 0 

Assumption C: T(~b) has no zeros on the real axis. 

In Appendix C we use these assumptions to perform Wiener-Hopf  
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factorizations r of  1 q-r(4)) and 1 q-r-1(r This leads us to define the 
following six functions in terms of c, ;~, 7, and 4): 

In t(4)) = In c q- 2 
{sinh2[0 - 2`)m]}[cosh(rn2`) cos(m4))] 

.~=1 rn sinh(2mr) cosh(m2`) ' 

] Im(4))[ < ;~ (30a) 

Dn(4)) = 1 + 2 ~ [ c o s ( m 4 ) ) ] / c o s h ( m 2 ) ,  I Im(4))L < A (30b) 

p(4)) = z ~ f i  {(1 -- x4~+3z)(1 -- x a m + l z - Z ) / ( 1  - -  x4~+lz)(1 -- xam+az-1)} ~ 
m=0 

(all 4)) (31) 

X(4)) ----- ~ sinh[m(T -- 22`)] cos(m4)) 
.... ~ sinh[m 0- -- 2`)] cosh(m2`)' [ Im(4))] < 2 min(2`, ~- --  2 )̀ (32) 

Y(4)) = ~ sinh(mA) c o s ( m 4 ) ) / s i n h [ r n ( - r  - -  2`)], 
m = l  

~- > 22` and Im(4))[ < ~- -- 22, (33) 

Z(4)) = �89162 -ff iT --  i2`) q- Dn(4) -- iT  q -  i2`)}, 

r <22`  and Im(4))l < 2 h - - z  (34) 

In (29) c is to be regarded as a function of  4), defined by (13) and (17). The 
parameters x and z in (31) are given by 

x = e -a,  z = e i~' (35) 

With these definitions, we find in Appendix C that  

T(--4)) : r(4)), r ( - - r  = 1/r(r (36) 

and that  T(4)) is given in terms of r(4)) by 

l n [ ( - - l y  r (4 ) ) / tN(4 ) ) ]  = (47r)-z fc  {ln[1 -k r(4)')]} 

• {Dn(4)' -- 4) -- ih) -k Dn(4)' -k 4) -- i2`)} d4)' (37) 

provided [ Im(4))[ < •, where C is the straight-line segment (ih -- ~r, i2  ̀§ 7r) 
in the complex 4)' plane. 

Note from (16) and (17) that  in the P.R., r = ia ,  where c~ is real and 
[ c~ [ < 2 .̀ Thus (37) gives the eigenvalue T(4)) throughout  the P.R. 

We also find that  the function r(4)) satisfies a nonlinear integral equation. 
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This equat ion has a different form according to whether 1 ~ �89 and to 
whether  ] Im(~)] ~ 2 min(1, 7 -  t) .  We list these forms below. In each 
there is an integration over a contour  C in the complex 4 '  plane, where C is 
the straight-line segment (iR --  7r, iR § 7r). Note  that  R need not  be the 
same in each of  the three forms, but  must  be real and satisfy 

0 < R < S~, (38) 

as well as the restrictions given after each form. 

(i) I Im(~)l < 2 min(1, ~- - -  1): 

ln[(--  1) "+~ r(~)/p(~)] 

= (27r) -1 fc{ln[1 q- r(~')]}{X(~ - -  qV) --  X(~ + ~')} dq~' (39a) 

R < 2 min( l ,  T --  t )  - -  i Im(~)l 

(ii) I < �89 2 t  < Im(q~) < 2(T - -  1): 

In r(q~) = 7r -1 f c  {ln[1 + r(~')]} 

• { Y(~ -]- q~' - -  iT) - -  Y(q~ --  q~' - -  i~-)} d~ '  (39b) 

2 1 + R < I m ( 9 ~ )  < 2 ( r - - t ) - - R  

(iii) I > �89 2(r  - -  1) < Im(q~) < 21: 

ln{r( $) /[p(  4,) p(  4~ - 2iT)]} 

= (27r) -~ fc{ln[1 + r(4')]} 

• {Z(4 - -  4 '  - -  iT) - -  Z (~  + 4' --  iT)) dd?' (39c) 

2 ( r  - -  t )  -1- R < Im(q~) < 21 --  R 

We show the three regions of  applicability in Fig. 1. F r o m  the quasi- 
periodic conditions (22) and (24) and the definitions (20) and (29) we can 
verify that  

r(~ + 2iT) = r(4) (40) 

Thus Eqs. (39a)-(39c) are sufficient to determine r(~) th roughout  the complex 
(~ plane. 

We assume that  SN can be chosen greater than A (this is certainly true 
for  sufficiently large N, and is probably  true for  N >~ 2). Then  f rom Assump- 
t ion B we see that  [ r(qV)[ < 1 on the r.h.s, o f  each of  Eqs. (37) and (3%)-(3%).  

822181z-3 
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T . . . . . . .  -i 

c i c 

Fig. 1. Regions of the [Im(~b), ;I] plane 
within which the forms a, b, and c of (39a)- 
(39c) and (41) apply. The broken line is 
the boundary of the region within which 
r(r is exponentially small when N is large. 

The  branch  of  the logar i thm on the r.h.s, must  be chosen in the obvious way 
so tha t  ln(1 + r)  is cont inuous for  I r I < 1 and vanishes when r = 0. 

No te  tha t  we have in fact  two sets o f  integral equations,  depending on 
whether  v = 0 or  1, i.e., whether  the corresponding eigenvector of  T is 
symmetr ic  or ant isymmetr ic  with respect  to reversing all vertical arrows on 
a row of  the lattice. We expect v = 0 to give the max imum,  positive, eigen- 
value A o =- T(i~), and v = 1 to give the next largest, negative, eigenvalue A1 �9 

5. T H E  L I M I T  N -->- oo 

When ~b' lies on the line segments C used in (37) and (39a)-(39c) we 
expect r ( ( / )  to tend to zero exponential ly with increasing N. Hence in the 
limit of  N large the equations (39a)-(39c) become 

r(4) ~ ( -1 )~+p(4) ,  

~ '  P(4)  P(q~ - -  2i~-), 

[ Im(4)[  < 2 minQt, ~- - -  2t) (41a) 

2)t < Im(~)  < 20- - -  )t) (41b) 

2(~- - -  A) < Im(~)  < 2A (41c) 

The regions of  applicabili ty of  these three limiting forms  are shown in Fig. 1. 
The  funct ion p(~)  is defined by (31). Tak ing  the logar i thm of  the r.h.s. 

o f  (31), Taylor  expanding, and rearranging terms, we find tha t  

- - n - l i  l n p ( 4 )  = 4 q- 2 ~ [sin(m~)]/[m cosh(mA)l 
m = l  

(42a) 

provided I Im(~)l  < A. Compar ing  this with w of  Ref. 10, we see tha t  

P(4)  = exp{in Am(4)} (42b) 
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where Am(~) is a rationalized elliptic amplitude function. It satisfies the 
relations 

Am(q~ -k 2iA) = Am(- -~)  = --Am(~) (43a) 

Im Am(q~) > 0 when 0 < Im(q~) < 2A (43b) 

Im[Am(~) -k Am(~')] > 0 if Re(~ --  ~') = 0 

and 

I Im(~) --  A I + k Im(~') + 3hi < 2A (43c) 

Using these properties in (42b) and (41a)-(41c), we find that r(~) tends 
exponentially to zero with increasing N provided 0 < Im(q~) < min(2A, r). 
This verifies Assumption B, and the stronger assumption that we made at the 
beginning of this section. 

Further, from (18), (27), and (29), ~ 1  . . . .  , q~, are zeros of 1 q- r(q~). We 
have assumed these to be real. However, for large N and real q~, r(~) is given 
by (41a), so to this order q~i ,..-, ~n are the roots of the equation 

1 -k (--1) n+v exp[in Am(~)l = 0 (44) 

As ~ increases from 0 to 2~r, Am(~) also increases monotonically from 0 
to 2zr. Also, Am(q~ § 2zr) ----- Am(q~) § 2~r. Thus the modulus 2~r there are 
precisely n real roots of (44), namely q~l ..... q~n �9 This verifies (to this order) 
Assumption A. 

From (18) and (29), the zeros of T(~) are the zeros of 1 + r(~b) that are 
not zeros of Q(~). Since we have found only n zeros of 1 + r(~b) on the real 
axis, it follows that T(~) has no real zeros. This agrees with Assumption C. 

We see therefore that our results are in agreement with our original 
assumptions and we have found two solutions (taking v = 0 or 1) to the 
functional equation (18). From Appendix B we expect these to correspond 
to the asymptotically degenerate maximum eigenvalues of T in the P.R. 

5.1. Free Energy 

In the limit of N large the r.h.s, of (37) tends exponentially to zero and 
we see that 

T(~) = (--1)vtN(~) @ exponentially smaller terms (45) 

In the P.R., q~ ----- i~ and the two largest eigenvalues of T are therefore, 
taking v = 0 or 1, 

A, =_ T(io 0 = (--1)~tu(ic0 + exponentially smaller terms (46) 
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From (29) we see that t(ic 0 is positive and to this order Ao and Ax are equal 
in magnitude but opposite in sign, A 0 being positive, as expected. 

The free e n e r g y f p e r  site of the infinite lattice is given by 

--[3f = lim N -1 In A0 = In t(i~) (47) N~ m 

which is the result previously obtained [Eq. (7.7) of Ref. 1]. 

5.2. Interfacial Tension 

From (2) the interracial tension cr is given by 

--/3~r = lim N -1 In ln(--Ao/AO ( 48 )  

To evaluate this, we must consider the dominant behavior of the r.h.s, of (37) 
when N is large. When 0 < A < 2r/3 to first order the function r(4;') on the 
r.h.s, of (37) is given by (41a). Thus to this order 

fqr 
ln(--Ao/A~) = (--1)~(27r) -1 _p( iA  -k u)[Dn(u -- is) -k Dn(u + ia)] du (49) 

where we have replaced 4; by ic~ and the integration variable 4;' by i)t § u. 
Replacing q; in the definition (31) of p(4;) by i)t -k u and comparing the 

resulting infinite product with w of Ref. 10, ~ we see that 

p(iA + u) = (--1)nk2~snU(K2u/zr, k2) (5o) 

where k2 is the elliptic modulus with associated elliptic integrals Ks, K2' 
such that 

rrK2'/K2 = 23, (51) 

The function p(i)t § u) therefore has a maximum at u = :kTr, its value 
being (--1)nk~ n. Performing an integration by steepest descents in (49), 
we see that when N is large 

ln(--Ao/A1) ~ (k2'K2)-l(27r/N) 1/~ k~/~ Dn(Tr @ ic 0 (52) 

Substituting this result into (48), we obtain 

/3or = -- �89 In k2 (53) 

z The third printing, 1967, of Ref. 10 contains an error in w The square root of q 
should be replaced by qZ/4. 
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When 2r/3 < A < ~-, r(~ ')  in (37) is given by (39c) rather than (39a). 
Thus to first order we must substitute r(d?') = p(e} ' )p(~ ' - -2 i t )  in (37). 
However, the r.h.s, is then independent of  v and to this order --Ao/A~ = 1. 
We therefore have to go to higher orders to calculate c~. We do this in 
Appendix D and show that we again obtain (49) and (53). Thus our results 
are valid throughout the P.R. 

Note that 0 < k2 < 1, so cr is positive, as expected. 

6. B E H A V I O R  N E A R  T H E  C R I T I C A L  T E H P E R A T U R E  

The Boltzmann weights a, b, c, and d are functions (1) of the temperature 
T. In the P.R., c decreases as T increases f rom zero until at the critical 
temperature Tc the Boltzmann weights satisfy the relation c = a -? b q- d. 

We have discussed the behavior of the free energy f i n  Ref. 1 and shown 
that near T~ the dominant singular contribution t o f i s  proportional to 

[cot(�89 I T -  To I ~/~ (54) 

or if r = m = integer, to 

2 ~ r - l ( T -  To) 2~ ln l T --  T~l (55) 

To avoid confusion with the standard notation for the critical exponent of  
the interfacial tension, we have replaced the/z of Ref. 1 by/2. It  is defined for 
all temperatures by 

/2 = ~rA/T (56) 

and at T~ is given explicitly in terms of a, b, e, and d by 0 < / 2  < ~r and 

cos/2 = (cd--ab) / (cdq-ab)  if  a = b  + c + d  or b : a q - c - c d  

= ( a b - - c d ) / ( a b 4 - c d )  if c = a q - b q - d  or d = a q - b q - c  
(57) 

When T increases f rom zero to T~, k2 increases f rom zero to one, so the 
interracial tension cr decreases f rom infinity to zero. To obtain the behavior 
of  ~ near Tc, we note f rom w of Ref. 10 that near k2 = 1 

ln(4/k~') ~ TrKz/2K2' (58) 

where ks' = (1 - -  k2~)1/2. Hence 

In ks ~ --8 exp(--vrK2/K~') = --8 exp(--rr2/2A) (59) 

using (51). 
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From (56) and Eq. (D4) of Ref. 1, we see that 

= / 2 K z / K z '  (60) 

Hence from (53) and (59) 

~--- 4q~/(~z) (61) 

where q~ is the q defined in Eq. (E7) of Ref. 1. We have shown there that q~ 
has a simple zero at T = T , ,  so near the critical temperature 

oc (T~ - -  T)'~/(2r~> (62) 

When ab = cd  the zero-field eight-vertex model decouples into two 
independent Ising models. In this case /2 = zr/2 and we regain the known 
critical behavior of the Ising model, ~1a,14) namely a logarithmic divergence of 
the specific heat and a linear vanishing of ~. 

Note also that for the Ising model case A = �89 (at all temperatures), 
so the function X(~) defined by (32) vanishes identically. From (39a) it 
follows that r ( ~ ) =  (--1)n+vp(~b) exactly. The two maximum eigenvalues 
can then be obtained exactly for all N from (37). 

7. S C A L I N G  P R E D I C T I O N S  

Using the usual notations of scaling theory, near Tc the free energy f is 
expected to have a dominant singularity proportional to 

( T -  T~) ~-~ or (To -- T) 2-~' (63) 

while the interfacial tension e is expected to be proportional to 

(T~ -- T)" (64) 

We see that our results (54) and (62) are in agreement with these predic- 
tions, with 

= cd = 2 -- ~r//2 (65) 

tL = ~r/2/2 (66) 

In addition, the critical exponent v of the correlation length has recently 
been calculated by Johnson et  al. ~15) and found to be given by 

v = 7r/2/2 (67) 
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Scaling theory predicts that  these critical exponents should satisfy the 
relations [Eqs. (12) and (13) of  Ref. 18, (28) of  Ref. 17, (9.3.15) of  Ref. 18]: 

/ , q - v - - - - 2 / 3 + y '  = 2 - - c ~ '  = 2 - - ~  (68a) 

/z = ( d -  1)v (68b) 

where d is the dimensionality of  the system. In our  case d = 2 and we see 
that  the exact results (65)-(67) for  the eight-vertex model do indeed satisfy 
the scaling predictions (68a) and (68b). 

A P P E N D I X  A.  P A R A M E T R I Z A T I O N  O F  T H E  
B O L T Z H A N  N W E I G H T S  

To obtain k, ~1, v, and p systematically f rom the four  equations (13), 
first eliminate p by taking the ratios of  a, b, c, and d. F r o m  w of  
Ref. 10 this gives 

a : b : c : d = sn(~] q- v) : sn(,/ - -  v) : sn(2~/) : - - k  sn(2~/) sn07 + v) sn07 --  v) 
(A1) 

To eliminate v, we note f rom (A1) that  

c d / a b  = - - k  sn~(2~/) 

We can also prove that  

(c  ~ § d 2 - -  a 2 - -  b2 ) /2ab  = cn(2~/) dn(2~?) 

[One way to prove (A3) is to use the formulas:  

sn~(2~/) - sn207 q- v) = [1 - k 2 sn2(2~?) sn207 q- v)] sn(~ 7 - v) sn(3~ q- v) 

(A2) 

(A3) 

(A4) 
sn(3~l + v) - sn(~/- v) = 2 sn(~/+  v) cn(2~)) dn(2~/)/[1 - k 2 sn2(2~/) sn2(~/+ v)] 

These formulas can be deduced f rom w167 8.154.4, and 5 of  Ref. 10.] 
We can use w167 and 5 of  Ref. 10 to eliminate ~/from (A2) and (A3). 

This gives 

k + k - 1  - -  2 

= (a  - b q -  c q -  d ) ( a  + b - c q -  d ) ( a  q-  b 4 -  c - d ) ( a  - b - c - d ) / 4 a b c d  

(A5) 

In an ordered state one of  the weights a, b, c, or d is greater than the sum 
of  the other  three (and all are positive). F rom (A5) it follows that  

k + k -1 > 2 (A6) 
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and hence we can choose k so that 

0 < k < 1 (A7) 

In the P.R. c > a + b -+- d, so the 1.h.s. of (A3) is greater than one. The 
1.h.s. of  (A2) is positive. It follows that we can choose ~/to be pure imaginary 
and such that 

0 < Im(•) < �89 (A8) 

The ratios a/c and b/c are positive and less than one. From (A1) it 
follows that we can choose v to be pure imaginary and such that 

I Im(v)[ < Im(~/) (A9) 

From w167 and 8.181 of Ref. 10 we see that all the elliptic O functions 
in (13) are positive (real), while the H functions are positive imaginary. Thus p 
must be negative imaginary. 

This completes the proof  of the inequalities (14). 

A P P E N D I X  B. T H E  PURELY ORDERED L IMIT  

We consider the low-temperature limit when c >~ a + b + d. In this 
case we see from (A5) that k is small. Hence K ~ �89 K'  and ~- are large, 
and we can use the approximate formulas (w167 8.192, 8.181, and 8.191 
of Ref. 10): 

k ~ 4e -~ (B1) 

O(u) ~_ 1, k-1/~H(u) ~_ sn u ~ sin u (B2) 

provided K'  -- I Im(u)l ~ 1. 
From (A2) and (15) it follows that Im(~7) ~ �89 is large, but that A/T 

is of order unity and less than one. Thus from (13) 

c ~-~ ip exp(Z -- �89 (B3) 

provided A -- I Im(~)l >~ I. 
From (19) the function h(~) is given by 

h(~) ~ 2e -T/z sin(�89 (B4) 

provided 2z -- ] Im(~)[ ~ 1. 
Substituting (B4) into the expressions (20) and (27) for g(~) and Q(~b), 
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assuming tha t  751 . . . . .  75n are real, and substituting these in turn  into (18), 
Eq. (18) becomes 

where 

( - - 1 )  e c -NT(75 )  f i  ( l  - -  Z/Zj)  ~ z q'~" -~- (--1)r "'" Z . )  
j = l  

(BS) 

Z = e i~', Z~ = e ie'~ (B6) 

and provided tha t  rain(A, 2r  - -  2A) - -  I Im(75)l ~ 1. 
This last condit ion is satisfied if 75 is real, and the 1.h.s. o f  (B5) vanishes 

if  q5 = 751 ..... 75,. Thus to this approx ima t ion  q ,..., z ,  are the distinct roots  
o f  the equat ion 

z '~ + (--1)'~/(zz "" z ,)  = 0 (B7) 

and hence 

( z l . . . z O  ~ = 1 ( B 8 )  

Note  tha t  f rom (28) and (B6) we have the exact  equat ion (for all values of  
a, b, c, and d i n  the P.R.) 

z 1 "-' z ,  = ( - -1)  ~ (B9) 

This agrees with (B8). There  are two solutions for  z 1 ,..., z , ,  depending 
on whether  we take the positive or negative roo t  in (B8), i.e., whether  v = 0 
or 1 in (B9). In  either case we obtain  

f i  (1 - -  z/zj) ~ 1 + ( - - 1 ) n ( z a  "'" z~)  z ~ 
J = l  

(BIO) 

Substi tuting this back  into (B5), the polynomials  on bo th  sides cancel, 
leaving [using (26)] 

T(75) ~ (--1)vc N, v = 0 or 1 (B l l )  

provided min( t ,  2r  - -  2A) - -  [ Im(75)l ~ 1. 
We see that  these are indeed the asymptot ical ly  degenerate m a x i m u m  

eigenvalues in the purely ordered limit. Also, f rom (B6), (B7), and (B9), 
zl ,..., z~ all lie on the unit  circle, so 751 .... ,75n are real, as assumed. 

Substi tuting (B4) into (20), (27), and (29), we can obtain r(75), the rat io 
of  the two terms on the r.h.s, o f  (18), in this limit. There  are different cases to 
consider, depending on the values of  Im(75) and A/r. We show some of  the 
regions of  the [Im(75), A] plane that  we are led to consider in Fig. 2. In  the 
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>, 

- "  0 1  -~ �9 z ' ,  
f 
Im(~) 

Fig. 2. The regions I-IX of the [Im(r A] plane 
referred to in Eq. (B12). 

interior of  these regions I - I X  (i.e., 
f rom the boundaries) we find the following results: 

a distance large compared with unity 

I :  r ( r  ~ ( - 1 ) n + " z  ~ 

II: ~-~ ( - -  l)~+'x~z -~ 

III:  ~ ( - -  l)~+"x-2~z" 

IV, V: ,~ 1 

VI, VII: ~,~ q n x - 2 ' ~  

VIII:  ~ ,  q '~ z  -2'* 

IX: ~ ,  q - ' ~ z  -2'~ 

(B12) 

where z is defined by (B6) and 

X ~--- e -a, q = e -2~" (B13) 

Examining these forms, we see that in this limit r(r  is exponentially 
small [i.e., N-11n]r ( r  tends to a negative limit as N--+ oo] when 
0 < Im(r  < min(2A, r). I t  is exponentially large when --min(2),, r) < I m ( r  < 0. 

From (18) and (29) the zeros of  T(r are also zeros of 1 q- r(r From 
(B3) and (B11) we see that T(r has no zeros on the real axis. Looking again 
at the forms (B12), we see that its zeros must lie (to modulus 2it) close to the 
lines Im(r  = • r). 

We have derived these results for the purely ordered limit. However, 
we do not expect a qualitative change as we raise the temperature and reduce e 
to values comparable with a, b, and d (so long as we stay in the P.R., 
c > a + b %- d). In particular, we still expect r(r  to be exponentially small 
in some domain above the real axis, and large in a domain below it. Thus in 
these domains one of the terms on the r.h.s, of (18) is much less than the 
other when N is large. This is the key property that we exploit in this paper 
to obtain a reformulation of (18) that is appropriate for examining the 
behavior as N--+ oo. 
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A P P E N D I X  C 

Wiener -Hopf  Factorizations of 1 + [ r ( ~ ) ]  • 

From (18), (26), and (29) we see that 

I 4- r(4') -- (--1)~T(r Q(4')/[g(4' 4- iA) Q(4' - 2iA)] (c1) 

By Assumption B, [ r(4')] < 1 when 0 < Im(4') < S:v �9 In fact from Appen- 
dix B we expect r(4') to tend to zero exponentially with increasing N in this 
domain. This suggests that we may usefully use the Wiener-Hopf tech- 
nique m,l~) and define two functions P1(4') and P2(4') by 

In P~(4,) = -- fcl {In[1 4- r(4,')l}U(4, -- 4'') d4'', 

In G(4')  = i_ {ln[1 + r(4'')]}U(4' - 4'') d4'', 
~ G '  2 

where 

U(4') - (2w)-1(1 -- e~4) -1 

Ira(4') < R1 (C2) 

Im(r > R2 (C3) 

(c4) 

In the above equations (71 and Ca are the straightline segments (iRa --  zr, 
iR~ 4- ~r) and (iR2 --  7r, iR~ 4- 70, respectively, in the complex 4'' plane. The 
parameters R1 and Ra are real and 

0 < R i  < S x ,  i =  1 or 2 (C5) 

From Assumption B it follows that [ r(r < 1 on C~ and Ca. Hence 
the logarithms on the r.h.s, of (C2) and (C3) are analytic, single-valued 
functions of r From (20), (21), (24), (27), and (29) they are also periodic, 
of period 2~r. The branch of the logarithm is to be chosen so as to be a 
continuous function of r, vanishing when r = 0. 

l fRa < Im(r < R1, then adding (C2) and (C3) and using r(r 4- 2zr) = 
r(r the r.h.s, can be evaluated by Cauchy's residue theorem, giving 

P i ( r 1 6 2  = 1 + r ( r  (C6) 

From its definition (C2), we see that P1(r is an analytic nonzero function 
of r for Ira(C) < R1, while P2(r is analytic and nonzero for Ira(C) > Ra. 
When Im(r > R1, Pz(r is to be regarded as defined by (C6), while Pa(r 
is defined by (C6) when Im(r < R 2 . 

The functions T(r Q(r and g(r are entire, so from (CI), 1 + r(r 
is a meromorphic function. From (C5) it follows that P~(4,) and P~(r are 
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also meromorphic functions, the zeros and poles of PI(~) [P2(~)] being those 
of 1 -t- r(~) above C1 [below C2]. 

We can obtain infinite product expansions of g(r and Q(~) that 
exhibit their zeros explicitly. To do this we use (20), (22), (28), and the 
formula [Eq. (3.7) and w167 and 8.192 of Ref. 10] 

where 

This gives 

h(4) =- 272q 1/4 sin(�89 f i  [(1 -- qmei~)(1 - -  qme-i~)] 
m : l  

(c7) 

q = e -2r (C8) 

7 = f i  (1 -- qZ~) (C9) 
m = l  

g(~ )  = xN~Ue-~ne~A((o) A(2i~r - -  4)  

= xU~Nein~A((~ + 2h-) A(--~)  

(C10a) 

(ClOb) 

and, to within a constant normalization factor that cancels out of (18) and (29) 

Q((o) = e-in~/2r(d?) G(c} - -  2iz) (Clla)  

= (--1) n+~ d~/2F(d? + Z/•') G(~b) (C11b) 

where 

= [ipO(O) 7Zqa/'x-~] u (C12) 

A(q~) = f i  (1 -- q~nei~)N (C13) 

F(~) = f i  ]-[ [ 1 -  q"e ~(~-~)] (C14) 
j = l  m = 0  

G(q~) = f i  f i  [ 1 -  q~%-i(~-~O] (C15) 
j = l  m = O  

The parameter x need not be defined at this stage, but for convenience in the 
next equation we set 

x = e ~a (C16) 

The functions A(q~), F(~), and G(q~) are entire. Using Assumption A, 
F(~b) and A(~) are nonzero in the upper halfplane, and G(~) is nonzero in the 
lower half-plane. 
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Substituting the forms (Clla) ,  (C10a), and (Cl lb)  of Q(r g(r  -~ i)t), 
and Q(r - 2ih) into ( e l )  and (C6), after some cancellations we find that 

P1(r P~(r 
= (--1)~:-NT(q~) F(~b) a(q~ - 2it) 

• [A(r + iA) A(2ir -- ih -- r g ( r  -? 2ir --  2ih) G(r -- 2ih)] -1 
(c17) 

Basically what we want to do now is to factorize T(r into two analytic 
factors T+(r and T_(r the former being nonzero in the upper half-plane 
and the latter nonzero in the lower half-plane. We then want to identify P1(r 
[P2(r with the product of the factors on the r.h.s, of  (C17) that are nonzero 
in the lower [upper] half-plane. 

However, since two functions that have the same poles and zeros are 
not necessarily identical, we are forced to adopt a slightly roundabout route. 
We define T+(r and T_(r by 

P1(r = T_(r G(r -- 2ir) /[A(2ir  - -  iA - -  r G(r -- 2ih)l (C18) 

P2(~) = (--1)"~-NT+(r F ( r 1 6 2  + iA) F(q~ + 2it -- 2iA)] (C19) 

then from (C2), (C3), and (C13)-(C15), T_(r is analytic and nonzero for 
Ira(C) < S u ,  and T+(r is analytic and nonzero for Ira(C) > 0. Also, from 
these equations we can deduce that 

T_(r --* 1 as Im(r -+ - - m  

T+(r --+ const as Im(r --+ +oo  (C20) 

T•162 + 2~r) = rj:(r 

Further, using (C17), it is apparent that 

T(r = T+(r T_(r (C21) 

From (18) and (29) the zeros of T(r are also zeros of 1 + r(~). From 
Assumptions B and C it follows that T(r is nonzero for - -SN < Ira(C) < SN.  
We also know from Ref. 1 that T(r is entire. Using (C21) to define T+(r in 
--S:~ < Im(~) ~< 0, it follows from the above remarks that 

T+(q~) is analytic and nonzero for Im((}) > --SN 
(c22) 

T_(r is analytic and nonzero for Ira(C) < S v 

We can now regard (C18) and (C19) as a natural factorization of (C17), 
Pt(r  containing all the poles and zeros of the r.h.s, of  (C17) that lie above 
iSN,  P2(r all the poles and zeros that lie on or below the real axis. 
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We now use the assumption that [ r(r > 1 when --SN < Im(r < 0 
and define two more functions 

In P3(r = -- f_ {ln[1 + 1 / r ( r 1 6 2  - -  r de' ,  Im(r < R 3 (C23) 
3 

In P4(r = I_ {ln[1 + 1 / r ( r 1 6 2  - -  r  Im(r > R 4 (C24) 
4 

where 
--SN < R3,4 < 0 (C25) 

and Cj is the straight-line segment ( i R j -  ~r, i R j - r  rr) in the complex 
r plane ( j  = 3 or 4). 

We apply similar reasoning to that used to obtain (C18)-(C22). First, 

Pz(5 b) P4(r ~ 1 -]- 1/r(r 

= (--1)"T(r Q(r g(r - iA) Q(r + 2iA)1-1 

= ( - -1 )~-NT(r162  -k 2iT) G(r 

• [A(r - -  i)t § 2iT) A( iA  - -  r r ( r  -k 2i)t) G(r -- 2ir + 2iA)] -z 

(C26) 
using (29), (18), (C1 lb), (C10b), (CI la), and (C16). 

We define T+(~) and T_(r by 

Ps(~b) = T_(r G((~)/[A(i) t  - -  r G(qb -- 2it + 2i2,)] (C27) 

P4(r = (--1)"~:-NT+($)F(q~ + 2i-c)/[A(dp - -  i2t + 2 i z )  F ( r  + 2i;~)] (C28) 

and verify that they satisfy (C21), (C20), and (C22). 
However, the factorization (C21) of T(r subject to the conditions (C20) 

and (C22), is unique. [To see this, consider another factorization T(r = 
T+'(r T_'(r Then from (C22), T ' ( r 1 6 2  is an entire function of r while 
from (C20) it is periodic of period 27r, tends to one as Ira(C) -7 --co, and 
tends to some constant as Im(4~) -+ + co. If  is therefore bounded, so by 
Liouville's theorem it must be a constant, namely unity. Thus T_'(r = 
T_(r 

The functions T_(r defined by (C18) and (C27) are therefore the same; 
similarly, so are T+(r defined by (C19) and (C28). 

Derivation of the Integral Equations 

The functions A(q~) is known, being given by (C13). The functions 
P~(r j = 1 ..... 4, are "almost known," in the sense that when N is large we 
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expect r(0' ) to be exponentially small in the definitions (C2) and (C3), and 
exponentially large in (C23) and (C24). Thus in this limit each P~(0) will be 
identically equal to unity, so long as 0 lies in the domain specified in each 
definition. 

We can therefore regard (C18), (C19), (C27), and (C29) as four equations 
for the four unknown functions F(0), G(0), T+(0), and T_(0 ). Eliminating 
T+(0) between (C19) and (C28), we obtain 

S(0) = S(0 + 2i~- - 2iA) P~(O)/P4(O) (c29) 
where 

S(O) = F(O)F(O + 2i1)/A(O + iA) (C30) 

Letting lm(0) ~ +oo in these equations, we see from (C13) and (C14) 
that F(0 ), A(0) ~ 1, so S(0) --~ 1 and P2(ioo) = P4(ioo). One can therefore 
replace P2(0) and P~(0) in (C29) by 

P/(O) = PJ(O)/P~(i~176 j = 2 or 4 (C31) 

This avoids convergence problems in the following discussion. 
Since, from (16), ~- > )t > 0, we can solve (C29) by recursion for S(0), 

giving 

s(0) = I~ {P2'[0 + 2im(~" - A)I/P~'[ 0 + 2im(~" - )t)]} (c32) 
m = 0  

Writing (C30) as 

F(O) = A((~ + i~) s(O)/F( 0 + 2i~) (C33) 

and solving this by recursion for F(0), we obtain 

F(0 ) -- F0(0) l~I [s( 0 + 4im;~)/S(O @ 2iA + 4imA)] (C34) 
m = 0  

where Fo(0) is a known function, being given by 

F0(0) ~- f i  {A[0 + i(4m + 1)/]/A[ 0 + i(4m + 3)A]} (C35) 
~ 0  

Substituting (C32) into (C34), taking logarithms of both sides, and using 
(C31), (C3), and (C24), we find that 

ln[F(O)/F~ = fc2 {ln[1 + r(0')]}J(0 - 0') d0' 

- Jcf4 {ln[1 + 1/r(O')]}J(O - 0') dO', Im(0) > R2 (C36) 
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where 

J(q~) = ~ ~ (--1)"{U[q~ + 2im)t + 2il(r -- A)] -- U(i~)} (C37) 
5=0 ~n=O 

Using (C4) to expand U(q~) in increasing powers of e ~ and substituting this 
expansion into (C37), the summations over I and m can be performed to give 

Y(q~) = (2~r) -1 ~ e*J~/[(1 + x2J)(1 -- qJx-2~)l (C38) 
j=l 

Ira(4) > 0, where q and x are defined by (C8) and (C16). 
Equation (C36) enables us to express F(q~) in terms of the values of 

r(~b') on C 2 or Ca. In particular, when N is large we expect the r.h.s, of (C36) 
to be small, so that 

F(4) ~-~ F0(q~), Im(4 ) > 0 (C39) 

We can obtain a similar equation for G(4 ) by eliminating T ( 4  ) between 
(C18) and (C27) and solving the resulting equation recursively. [Only now 
we iterate toward --ioo in the 4 plane and we keep the original normalizations 
of P1(4) and P8(4).] This gives 

ln[G(4)/ro(--4)] 

= -- I_ {ln[1 § r(4')]}Y(4' -- 4) d4' 
1 

q- re3 {ln[1 q- 1/r((Y)l}Y(d?' -- 4) d4, Im(4) < R3 (C40) 

Hence when N is large 

c(4)  ~ F0(--4), Ira(4) < 0 (C41) 

We can now substitute the expressions given by (C36) and (C40) for 
F(q~) and G(q~) into (C11) and (29) to obtain an equations for r(q~). We get 
different forms (applicable in different domains of the 4 plane) according to 
whether we use (Cl la)  or (C1 lb) to evaluate Q(q~). In particular, if we use 
(Cl la)  for Q(4 q- 2//I) and (Cl lb)  for Q(4 - 2iA) in (29), we obtain 

ln[(--1) ~+" r(4)/p(4)] = (2~) -1 fc {ln[1 q- r(4')]}X(4 -- 4') d4' 
2 

-- (27r)-1 fc~ {ln[1 q- 1/r(4')]}X(4 -- cy) d 4' (C42) 
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provided 

R2 -- 2 minQt, ~- -- h) < Im(4) < R 3 § 2 min(h, r -- A) 

We have chosen R 1 = R2, R4 = R3 (in this equation this involves no loss of 
generality); P(4) is given by (31) [we have used (C13)]; and X(4 ) is given by 

(27r)-lX(4) -= J(4 4- 2iA) + J(2i2t - -  4 )  

-- J(4 § 2/r -- Z/h) -- J(Zi'r - -  2iA - -  4 )  (C43) 

Using (C38), (C8), and (C16), we see that this is the same as the definition 
(32) of X(4 ) in the text. 

In the limit of N large we expect the r.h.s, of (C42) to be small (since r 
and 1/r in it are small). Hence in this limit, taking Rz--, 0 +, R3-+ 0-, 

r(4) ~ (--1)"+~P(4), [ Im(4)] < 2 min(A, r -- A) (C44) 

From (C43) it is apparent that P(4) satisfies the symmetry relation 

P(--4)  = l/p(4) (C45) 

and hence so does r(4) in this limit. Further, if we suppose that (C42) can be 
solved recursively for r(4), then 

r(--4)  = l /r(4 ) (C46) 

for all f in i t e  N .  To see this, take R a = --R~ in (C42) and replace 4' in the 
second integral by --4' .  Using (C46) in this integral, we obtain Eq. (39a). 
Since X(4) is an even function, it is apparent that the r.h.s, of (39a) is an odd 
function of 4, and hence r(4 ) on the 1.h.s. satisfies (C46). 

The relation (C46) is simply equivalent to asserting that 41 ..... 4n occur 
in pairs (4J, --4J), which we could have assumed for reasons of symmetry 
in the beginning. However, we feel that the derivation given above makes 
the reasoning a little clearer. 

We have now deduced the form (39a) of the integral equation for r(4). 
To obtain (39b), we use the form (C1 la) of Q(4) for both Q(4 + 2i~) and 
Q(4 - 2iA) in (29). Substituting the expressions (C36) and (C40) for F(4 ) 
and G(4), choosing R 1 = R2 = --Ra = --R4 = R, and using (C46), we 
obtain (39b) with 

~-~Y(4) = o'(4 + i~ -- 2iA) + J ( i ,  -- 2 a  -- 4) 

- -  J ( 4  + i r  + Z/h) -- J(2i)t 4- ir  - -  4)  (C47) 

Using (C38), we see that this is the definition (33) of Y(4). 

8zz/8/~-4 
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To obtain (39c), we use the quasiperiodic condition (22) together with 
(C1 la) to establish the formula 

Q((o)  = ( - - 1 ) ~ ' + " e - ~ ' - a i ~ | 1 6 2  - -  2 i t )  G(r -- 4 i t )  (C48) 

We use this formula for Q(4) + 2i;~) in (29), and (Cllb)  for Q(r -2iA).  
Using (C36) and (C40) as before, we obtain (39c) with 

Z(4) = 1 -k 2rr[J(4 + 2iA -- i t )  q -  J(2i~t  - -  i r  - -  c~) 

-- J(r  -~ 3 i t  - -  2iA) -- J ( 3 i r  - -  2 i~  - -  eft)] (C49) 

Using (C38) and (30b), this is the definition (34). 
This completes the derivation of Eqs. (39a)-(39b) for r(r In Section 5 

of the text we show that these results are consistent with the assumptions 

r(q~) --+ 0 as N - +  oo when 

r ( r  oo as N--~ oo when 

0 < Im(r < min(2;~, r) 

--min(2A, r) < Ira(C) < 0 
( c 5 0 )  

This checks Assumption B and the assumptions we used to obtain (C39) and 
(C41). 

To obtain an equation for T(q~), we multiply (C18) by (C28) and find, 
using (C21), 

r ( r  = (-- 1)v~NA(4) -- i)~ + 2it) A ( 2 i r  - -  iA - -  6) F(r + 2i~,) G(r -- 2i)t) 

x P,(r P,((o)/[F(dl) + 2it) G(~ -- 2/r)] (C51) 

First consider the leading behavior when N--+ oo. To do this, we note 
from (C2), (C24), and (C50) that P~(q~), P~(r ---> 1 as N--* 0% provided 
[ Im(Ib)l < min(2;~, ~-). Using also (C39), (C41), and (C13), we see from (C51) 
that 

T(4 ) ~ (--1)vtN(4) (C52) 

provided 

i Im(~)[ < min(2A, r) (C53) 

The function t(q0 is independent of N and is given by 

t(4~) = ~t+(,b) ,+(-r 
where, if 

(C54) 

h+(~) = f l  (1 -- q'~e ~*) (C55) 
m ~ 0  
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then 

t+(r ) = f i  h+[ 4 q- 2iT q- (4m -- 1) i;~] h+[r + (4m + 3) iA] 
,~=0 h+[r q- 2it  + (4m ~ 1) i)] h+[ 4 q- (4m q- 5) iA] (C56) 

Note that t(r ) is analytic and nonzero in the domain (C53), which is in 
agreement with Assumptions B and C. 

Using the relation between c and {: given in Eq. (D36) of Ref. 1, we can 
express c-lt(4) as a product of terms of the form 1 -- ~, where I ~l < 1. 
Taking logarithms, Taylor-expanding each ln(1 -- ~) term, and interchanging 
summations, we find that t(r ) is given by (30a). 

Now take N to be finite and substitute the full expressions (C2), (C24), 
(C36), and (C40) for P , ,  P4, F, and G into (C51). Choosing R~ = R 2 = 
--R3 = --/?4 --- R and using (C46), we obtain 

In[(--1) ~ T(4) / tN(4)]  = f, {ln[1 + r(4')]}{W(4 -- 4') -- 141(4 + 4')} d4' 

(C57) 

where C is the line segment (JR - -  ~, iR  + w) and 

W(r = J(4 + 2iA) -- J(2iA - -  4)  + J (2 i r  - -  4 )  - -  Y (4  q- 2it) -- U(r ) 

= (4w)-a[Dn(r + iA) -- 1] (C58) 

using (C38), (C4), and (30b). 
In this case we do lose some generality by choosing R1 = R~ and 

R 3 = R~, since (C57) is only valid if 

J Im(4)l < min(R, 2A -- R) (C59) 

Thus the maximum domain of validity is obtained by choosing R = h. This 
is sufficient for considering the P.R., where r = io~ and I a ] < A [Eqs. (16) 
and (17)]. Further, it turns out to be a convenient choice mathematically, 
since when 0 < A < 2r/3 to leading order for N large, r(r ) ~ P(4) on C 
and P(r has a saddle point at 4 = iA + w that dominates the r.h.s, of (C57). 

Choosing therefore R = A and using (C58), together with the relations 

Dn(4 ) = Dn(--r  = --Dn(r  + 2i,~) (C60) 

Eq. (C57) becomes the result (37) quoted in the text. It is apparent from (37) 
that T(4 ) is an even function. 
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A P P E N D I X  D. ~ FOR h > 2T13 

As we remark in Section 5, the derivation of the interfacial tension 
given in that section breaks down when 2~-/3 < A < ~-. 

To overcome this, let r0(q~) and rl(q~ ) be the functions r(q~) evaluated 
for v = 0 and 1, respectively. Then from (37) 

ln(--A0/A1) = (2~r) -1 B(ih q- u)[Dn(u -- ie 0 q- Dn(u q- i~)1 du (D1) 
7r 

where we have replaced ~b by in, qV by iA + u 

B(4 ) = �89 In{[1 q- r0(q~)]/[1 q- r~(4)]} (D2) 

Thus we need to calculate the leading nonzero contribution to B(q~) 
when N is large and Im(qb) = h. We remark that one way to tackle this 
problem that is almost certainly doomed to failure is to attempt to obtain 
explicit expansions of ro(q~) and r~(4) as sums of terms that decrease exponen- 
tially with N. It appears that as ;~ -* ~-, a larger and larger number of dominant 
terms in the two expansions are the same, making it necessary to go to a large 
number of terms to find B(~b). 

Instead we work with two functions L(~) and M(q~) defined by 

L(~) = }[r0(4) + r~(~)], M(4)  = }[r0(4) - -  r~(4)] (D3) 

We consider only A > 2~-/3 and define two domains Da and D2 by 

D~: 0 < lm(q~) < 2(~- -- )t) (D4a) 

D~: 2(~- -- ),) < Im(q~) < )t (D4b) 

Then from (41c), when 4) c D2, 

L(56 ) ~ p(~) p(~ -- 2i~-) (D5) 

for N large, and M(q~) must be exponentially smaller than L(q~). Thus 

1 >~ [ L(~)[ ~ [ M(q~)[ (D6) 

In both D z and D2 we know that ro(~b) and rz(~) are exponentially small 
compared with unity. Thus 

I 1 q- L(~b)L >~ [ M(q~)l (D7) 

and from (D2) and (D3) we see that 

B(~) ~ M(~) (DS) 
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We therefore need to calculate M(r for Im(r = 2~, or more generally 
for r ~ D2. When r s D, we see from (41a) and (D3) that 

M(r ~-~ (--1)~p(r (D9) 

We start by assuming this result applies also in D2: Less strongly, we assume 
that if Ms is the least upper bound of [ M(iA 4- u)l for u real, then 

lira [Mb/kz n] (DIO) 
N-~ eo 

exists. We then calculate M(r and verify this assumption. 
We use (39c) to obtain a recursion relation for M(r when N is large. 

To do this, we choose a r in D 2 , then choose an R so that the restrictions 
governing (39c) are satisfied, then move the contour C to the line segment 
(i2~ -- ~v, iA 4- 7r). The contour C is thereby forced to cross two poles in the 
complex r plane of the function 

f @ ' )  = Z ( r  (D l l )  

the poles occurring when 

4 -- 4'  -- ir = i(r -- 2)0, q5 -- r -- ir = --i'r (D12) 

Both have residue --i. 
Taking account of the contributions of these poles, Eq. (39c) becomes 

ln{r(q~)/[p(r -- 2it)]} = ln[1 + r(r  -- 2it  + 2/))] + ln[1 -r r(r 

+ (2~r) -1 ( { l n [ 1  + r(r162 de' (D13) 
J c  

provided r c D2, where C is now the line segment (iA -- re, iA 4- 7r). 
This equation holds for both v = 0 and v = 1. Taking the difference of 

the equations for the two cases, using (D3), (D6), and (D7), and retaining 
only dominant terms, we find that 

M(r162 = M(~ -- 2ir + 2iA) + (27r) -~ fc M(~') f (~ ' )  d6' (D14) 

for r ~ D2 �9 We have neglected a term M(r on the r.h.s., since it must be 
negligible compared with the 1.h.s. 

The func t ionf ( r  is continuous on C and independent of N. Thus from 
(D10) the integral in (D14) is of order k2 n. 
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The function L(q~) in (D14) is known, being given by (D5). Using the 
periodicity property p(d?)p(q~ + 2iA) -~ 1, (D5) can also be written 

L ( ~ )  = p ( ~ ) / p ( ~  - -  2i'r + 2i)0 (D15) 

Also, when 2(~- -- )t) < Ira(6) < 4(~- -- )t), the function M(~ -- 2i~- + 2i) 0 
in (D14) is given by (D9). Thus in this case solving (D14) for M(q~) gives 

M(q~) ,~(--1)'~p(6) + L(~) O(k2 '~) (D16) 

which is virtually the same form as (D9). If necessary, we can now use this 
result to solve (D14) for M(~) when 4(r -- A) < Im(~) < 6(~- -- ,~), and 
so on. In all cases we find M(q~) is given by (D16) in the domain D2. 

Further, if we allow q~ to cross the Im(~b) = A boundary of D~, the 
only effect is to replace ln[1 + r(q~)] in (D13) by --ln[1 + r(2i)t - -  ~b)]. In 
either case these terms are negligible and do not affect (D14). Thus (D16) is 
valid also for Im(q~) = )t. 

The point we wish to make is that the second term on the r.h.s, of (DI6) 
is in general exponentially small compared with the first. Hence we can use 
the form (Dg) of M(q~) in (D8) and (DI), giving the same equations (49) 
and (53) for the interracial tension as apply when 0 < 2t < 2~-/3. 

More precisely, from (50), p@) has a saddle point at ~ = i)~ + ~r, its 
absolute value there being kz ". Since I L(~)I ~ 1 for Im(q~) ----- A, the second 
term on the r.h.s, of (D16) is exponentially small compared with this saddle- 
point value, and to first order can be neglected in the integrands of (D1) and 
(D14). 

This verifies our original assumption (D10) and our above remarks on 
the interracial tension. 
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